Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f3(x, 0, 0) -> s1(x)
f3(0, y, 0) -> s1(y)
f3(0, 0, z) -> s1(z)
f3(s1(0), y, z) -> f3(0, s1(y), s1(z))
f3(s1(x), s1(y), 0) -> f3(x, y, s1(0))
f3(s1(x), 0, s1(z)) -> f3(x, s1(0), z)
f3(0, s1(0), s1(0)) -> s1(s1(0))
f3(s1(x), s1(y), s1(z)) -> f3(x, y, f3(s1(x), s1(y), z))
f3(0, s1(s1(y)), s1(0)) -> f3(0, y, s1(0))
f3(0, s1(0), s1(s1(z))) -> f3(0, s1(0), z)
f3(0, s1(s1(y)), s1(s1(z))) -> f3(0, y, f3(0, s1(s1(y)), s1(z)))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f3(x, 0, 0) -> s1(x)
f3(0, y, 0) -> s1(y)
f3(0, 0, z) -> s1(z)
f3(s1(0), y, z) -> f3(0, s1(y), s1(z))
f3(s1(x), s1(y), 0) -> f3(x, y, s1(0))
f3(s1(x), 0, s1(z)) -> f3(x, s1(0), z)
f3(0, s1(0), s1(0)) -> s1(s1(0))
f3(s1(x), s1(y), s1(z)) -> f3(x, y, f3(s1(x), s1(y), z))
f3(0, s1(s1(y)), s1(0)) -> f3(0, y, s1(0))
f3(0, s1(0), s1(s1(z))) -> f3(0, s1(0), z)
f3(0, s1(s1(y)), s1(s1(z))) -> f3(0, y, f3(0, s1(s1(y)), s1(z)))
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
F3(s1(0), y, z) -> F3(0, s1(y), s1(z))
F3(s1(x), 0, s1(z)) -> F3(x, s1(0), z)
F3(s1(x), s1(y), 0) -> F3(x, y, s1(0))
F3(0, s1(s1(y)), s1(s1(z))) -> F3(0, s1(s1(y)), s1(z))
F3(s1(x), s1(y), s1(z)) -> F3(s1(x), s1(y), z)
F3(0, s1(s1(y)), s1(s1(z))) -> F3(0, y, f3(0, s1(s1(y)), s1(z)))
F3(0, s1(0), s1(s1(z))) -> F3(0, s1(0), z)
F3(0, s1(s1(y)), s1(0)) -> F3(0, y, s1(0))
F3(s1(x), s1(y), s1(z)) -> F3(x, y, f3(s1(x), s1(y), z))
The TRS R consists of the following rules:
f3(x, 0, 0) -> s1(x)
f3(0, y, 0) -> s1(y)
f3(0, 0, z) -> s1(z)
f3(s1(0), y, z) -> f3(0, s1(y), s1(z))
f3(s1(x), s1(y), 0) -> f3(x, y, s1(0))
f3(s1(x), 0, s1(z)) -> f3(x, s1(0), z)
f3(0, s1(0), s1(0)) -> s1(s1(0))
f3(s1(x), s1(y), s1(z)) -> f3(x, y, f3(s1(x), s1(y), z))
f3(0, s1(s1(y)), s1(0)) -> f3(0, y, s1(0))
f3(0, s1(0), s1(s1(z))) -> f3(0, s1(0), z)
f3(0, s1(s1(y)), s1(s1(z))) -> f3(0, y, f3(0, s1(s1(y)), s1(z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
F3(s1(0), y, z) -> F3(0, s1(y), s1(z))
F3(s1(x), 0, s1(z)) -> F3(x, s1(0), z)
F3(s1(x), s1(y), 0) -> F3(x, y, s1(0))
F3(0, s1(s1(y)), s1(s1(z))) -> F3(0, s1(s1(y)), s1(z))
F3(s1(x), s1(y), s1(z)) -> F3(s1(x), s1(y), z)
F3(0, s1(s1(y)), s1(s1(z))) -> F3(0, y, f3(0, s1(s1(y)), s1(z)))
F3(0, s1(0), s1(s1(z))) -> F3(0, s1(0), z)
F3(0, s1(s1(y)), s1(0)) -> F3(0, y, s1(0))
F3(s1(x), s1(y), s1(z)) -> F3(x, y, f3(s1(x), s1(y), z))
The TRS R consists of the following rules:
f3(x, 0, 0) -> s1(x)
f3(0, y, 0) -> s1(y)
f3(0, 0, z) -> s1(z)
f3(s1(0), y, z) -> f3(0, s1(y), s1(z))
f3(s1(x), s1(y), 0) -> f3(x, y, s1(0))
f3(s1(x), 0, s1(z)) -> f3(x, s1(0), z)
f3(0, s1(0), s1(0)) -> s1(s1(0))
f3(s1(x), s1(y), s1(z)) -> f3(x, y, f3(s1(x), s1(y), z))
f3(0, s1(s1(y)), s1(0)) -> f3(0, y, s1(0))
f3(0, s1(0), s1(s1(z))) -> f3(0, s1(0), z)
f3(0, s1(s1(y)), s1(s1(z))) -> f3(0, y, f3(0, s1(s1(y)), s1(z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 4 SCCs with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F3(0, s1(0), s1(s1(z))) -> F3(0, s1(0), z)
The TRS R consists of the following rules:
f3(x, 0, 0) -> s1(x)
f3(0, y, 0) -> s1(y)
f3(0, 0, z) -> s1(z)
f3(s1(0), y, z) -> f3(0, s1(y), s1(z))
f3(s1(x), s1(y), 0) -> f3(x, y, s1(0))
f3(s1(x), 0, s1(z)) -> f3(x, s1(0), z)
f3(0, s1(0), s1(0)) -> s1(s1(0))
f3(s1(x), s1(y), s1(z)) -> f3(x, y, f3(s1(x), s1(y), z))
f3(0, s1(s1(y)), s1(0)) -> f3(0, y, s1(0))
f3(0, s1(0), s1(s1(z))) -> f3(0, s1(0), z)
f3(0, s1(s1(y)), s1(s1(z))) -> f3(0, y, f3(0, s1(s1(y)), s1(z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
F3(0, s1(0), s1(s1(z))) -> F3(0, s1(0), z)
Used argument filtering: F3(x1, x2, x3) = x3
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f3(x, 0, 0) -> s1(x)
f3(0, y, 0) -> s1(y)
f3(0, 0, z) -> s1(z)
f3(s1(0), y, z) -> f3(0, s1(y), s1(z))
f3(s1(x), s1(y), 0) -> f3(x, y, s1(0))
f3(s1(x), 0, s1(z)) -> f3(x, s1(0), z)
f3(0, s1(0), s1(0)) -> s1(s1(0))
f3(s1(x), s1(y), s1(z)) -> f3(x, y, f3(s1(x), s1(y), z))
f3(0, s1(s1(y)), s1(0)) -> f3(0, y, s1(0))
f3(0, s1(0), s1(s1(z))) -> f3(0, s1(0), z)
f3(0, s1(s1(y)), s1(s1(z))) -> f3(0, y, f3(0, s1(s1(y)), s1(z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F3(0, s1(s1(y)), s1(0)) -> F3(0, y, s1(0))
The TRS R consists of the following rules:
f3(x, 0, 0) -> s1(x)
f3(0, y, 0) -> s1(y)
f3(0, 0, z) -> s1(z)
f3(s1(0), y, z) -> f3(0, s1(y), s1(z))
f3(s1(x), s1(y), 0) -> f3(x, y, s1(0))
f3(s1(x), 0, s1(z)) -> f3(x, s1(0), z)
f3(0, s1(0), s1(0)) -> s1(s1(0))
f3(s1(x), s1(y), s1(z)) -> f3(x, y, f3(s1(x), s1(y), z))
f3(0, s1(s1(y)), s1(0)) -> f3(0, y, s1(0))
f3(0, s1(0), s1(s1(z))) -> f3(0, s1(0), z)
f3(0, s1(s1(y)), s1(s1(z))) -> f3(0, y, f3(0, s1(s1(y)), s1(z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
F3(0, s1(s1(y)), s1(0)) -> F3(0, y, s1(0))
Used argument filtering: F3(x1, x2, x3) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f3(x, 0, 0) -> s1(x)
f3(0, y, 0) -> s1(y)
f3(0, 0, z) -> s1(z)
f3(s1(0), y, z) -> f3(0, s1(y), s1(z))
f3(s1(x), s1(y), 0) -> f3(x, y, s1(0))
f3(s1(x), 0, s1(z)) -> f3(x, s1(0), z)
f3(0, s1(0), s1(0)) -> s1(s1(0))
f3(s1(x), s1(y), s1(z)) -> f3(x, y, f3(s1(x), s1(y), z))
f3(0, s1(s1(y)), s1(0)) -> f3(0, y, s1(0))
f3(0, s1(0), s1(s1(z))) -> f3(0, s1(0), z)
f3(0, s1(s1(y)), s1(s1(z))) -> f3(0, y, f3(0, s1(s1(y)), s1(z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F3(0, s1(s1(y)), s1(s1(z))) -> F3(0, s1(s1(y)), s1(z))
F3(0, s1(s1(y)), s1(s1(z))) -> F3(0, y, f3(0, s1(s1(y)), s1(z)))
The TRS R consists of the following rules:
f3(x, 0, 0) -> s1(x)
f3(0, y, 0) -> s1(y)
f3(0, 0, z) -> s1(z)
f3(s1(0), y, z) -> f3(0, s1(y), s1(z))
f3(s1(x), s1(y), 0) -> f3(x, y, s1(0))
f3(s1(x), 0, s1(z)) -> f3(x, s1(0), z)
f3(0, s1(0), s1(0)) -> s1(s1(0))
f3(s1(x), s1(y), s1(z)) -> f3(x, y, f3(s1(x), s1(y), z))
f3(0, s1(s1(y)), s1(0)) -> f3(0, y, s1(0))
f3(0, s1(0), s1(s1(z))) -> f3(0, s1(0), z)
f3(0, s1(s1(y)), s1(s1(z))) -> f3(0, y, f3(0, s1(s1(y)), s1(z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
F3(0, s1(s1(y)), s1(s1(z))) -> F3(0, y, f3(0, s1(s1(y)), s1(z)))
Used argument filtering: F3(x1, x2, x3) = x2
s1(x1) = s1(x1)
f3(x1, x2, x3) = f3(x1, x2, x3)
0 = 0
Used ordering: Quasi Precedence:
f_3 > s_1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F3(0, s1(s1(y)), s1(s1(z))) -> F3(0, s1(s1(y)), s1(z))
The TRS R consists of the following rules:
f3(x, 0, 0) -> s1(x)
f3(0, y, 0) -> s1(y)
f3(0, 0, z) -> s1(z)
f3(s1(0), y, z) -> f3(0, s1(y), s1(z))
f3(s1(x), s1(y), 0) -> f3(x, y, s1(0))
f3(s1(x), 0, s1(z)) -> f3(x, s1(0), z)
f3(0, s1(0), s1(0)) -> s1(s1(0))
f3(s1(x), s1(y), s1(z)) -> f3(x, y, f3(s1(x), s1(y), z))
f3(0, s1(s1(y)), s1(0)) -> f3(0, y, s1(0))
f3(0, s1(0), s1(s1(z))) -> f3(0, s1(0), z)
f3(0, s1(s1(y)), s1(s1(z))) -> f3(0, y, f3(0, s1(s1(y)), s1(z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
F3(0, s1(s1(y)), s1(s1(z))) -> F3(0, s1(s1(y)), s1(z))
Used argument filtering: F3(x1, x2, x3) = x3
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f3(x, 0, 0) -> s1(x)
f3(0, y, 0) -> s1(y)
f3(0, 0, z) -> s1(z)
f3(s1(0), y, z) -> f3(0, s1(y), s1(z))
f3(s1(x), s1(y), 0) -> f3(x, y, s1(0))
f3(s1(x), 0, s1(z)) -> f3(x, s1(0), z)
f3(0, s1(0), s1(0)) -> s1(s1(0))
f3(s1(x), s1(y), s1(z)) -> f3(x, y, f3(s1(x), s1(y), z))
f3(0, s1(s1(y)), s1(0)) -> f3(0, y, s1(0))
f3(0, s1(0), s1(s1(z))) -> f3(0, s1(0), z)
f3(0, s1(s1(y)), s1(s1(z))) -> f3(0, y, f3(0, s1(s1(y)), s1(z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
F3(s1(x), s1(y), 0) -> F3(x, y, s1(0))
F3(s1(x), 0, s1(z)) -> F3(x, s1(0), z)
F3(s1(x), s1(y), s1(z)) -> F3(s1(x), s1(y), z)
F3(s1(x), s1(y), s1(z)) -> F3(x, y, f3(s1(x), s1(y), z))
The TRS R consists of the following rules:
f3(x, 0, 0) -> s1(x)
f3(0, y, 0) -> s1(y)
f3(0, 0, z) -> s1(z)
f3(s1(0), y, z) -> f3(0, s1(y), s1(z))
f3(s1(x), s1(y), 0) -> f3(x, y, s1(0))
f3(s1(x), 0, s1(z)) -> f3(x, s1(0), z)
f3(0, s1(0), s1(0)) -> s1(s1(0))
f3(s1(x), s1(y), s1(z)) -> f3(x, y, f3(s1(x), s1(y), z))
f3(0, s1(s1(y)), s1(0)) -> f3(0, y, s1(0))
f3(0, s1(0), s1(s1(z))) -> f3(0, s1(0), z)
f3(0, s1(s1(y)), s1(s1(z))) -> f3(0, y, f3(0, s1(s1(y)), s1(z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
F3(s1(x), s1(y), 0) -> F3(x, y, s1(0))
F3(s1(x), 0, s1(z)) -> F3(x, s1(0), z)
F3(s1(x), s1(y), s1(z)) -> F3(x, y, f3(s1(x), s1(y), z))
Used argument filtering: F3(x1, x2, x3) = x1
s1(x1) = s1(x1)
f3(x1, x2, x3) = f3(x1, x2, x3)
0 = 0
Used ordering: Quasi Precedence:
f_3 > s_1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
F3(s1(x), s1(y), s1(z)) -> F3(s1(x), s1(y), z)
The TRS R consists of the following rules:
f3(x, 0, 0) -> s1(x)
f3(0, y, 0) -> s1(y)
f3(0, 0, z) -> s1(z)
f3(s1(0), y, z) -> f3(0, s1(y), s1(z))
f3(s1(x), s1(y), 0) -> f3(x, y, s1(0))
f3(s1(x), 0, s1(z)) -> f3(x, s1(0), z)
f3(0, s1(0), s1(0)) -> s1(s1(0))
f3(s1(x), s1(y), s1(z)) -> f3(x, y, f3(s1(x), s1(y), z))
f3(0, s1(s1(y)), s1(0)) -> f3(0, y, s1(0))
f3(0, s1(0), s1(s1(z))) -> f3(0, s1(0), z)
f3(0, s1(s1(y)), s1(s1(z))) -> f3(0, y, f3(0, s1(s1(y)), s1(z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
F3(s1(x), s1(y), s1(z)) -> F3(s1(x), s1(y), z)
Used argument filtering: F3(x1, x2, x3) = x3
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f3(x, 0, 0) -> s1(x)
f3(0, y, 0) -> s1(y)
f3(0, 0, z) -> s1(z)
f3(s1(0), y, z) -> f3(0, s1(y), s1(z))
f3(s1(x), s1(y), 0) -> f3(x, y, s1(0))
f3(s1(x), 0, s1(z)) -> f3(x, s1(0), z)
f3(0, s1(0), s1(0)) -> s1(s1(0))
f3(s1(x), s1(y), s1(z)) -> f3(x, y, f3(s1(x), s1(y), z))
f3(0, s1(s1(y)), s1(0)) -> f3(0, y, s1(0))
f3(0, s1(0), s1(s1(z))) -> f3(0, s1(0), z)
f3(0, s1(s1(y)), s1(s1(z))) -> f3(0, y, f3(0, s1(s1(y)), s1(z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.